
8 The Delphi Magazine Issue 57

Dragging And Dropping
Part 2: Enhanced VCL
by Brian Long

Last month we looked at basic
drag and drop in Delphi appli-

cations, using the support built
into the VCL. This month, we will
progress onto custom drag objects
and see what they can do for us.

Drag Control Objects
When a drag and drop application
has a drop target control that can
accept many different dragged
source controls, the implementa-
tion of the OnDragOver and OnDrag-
Drop event handlers can end up
getting a little complex. Often,
whilst there are a variety of
dragged source controls that can
be accepted, they will ultimately
all provide the same sort of
information, for example a file
name.

To simplify this sort of scenario,
you can use custom drag objects
(sometimes called drag control
objects), which were introduced in
a very understated fashion in
Delphi 2. The OnStartDrag event
handler of all controls that can be
dragged can each create an
instance of a class inherited from
TDragObject. This object is used to
represent the information that is
being transferred from the dragged
control to the drop target.

The current drag control class
hierarchy can be seen in Figure 1,
with Figure 2 showing the original
hierarchy. Whilst TDragObject is
the key base class, you will typi-
cally be interested in inheriting
from the more able TDragControl-
Object class. We will look into some
of the capabilities of these two
classes throughout the rest of this
article. You can see in Figure 1 that
this hierarchy also has a class that
is used for drag and dock support,
as introduced in Delphi 4. Dragging
and docking support uses the same
underlying mechanism to operate
and we might come back to look at
it in more detail in a future article.

To set the custom drag object
up, you assign the created instance
to the DragObject var parameter of
the source control’s OnStartDrag
event handler, which defaults to
nil. Having done this, when the
source control is dragged over and
dropped on a target control, one of
the parameters of the target con-
trol’s OnDragOver and OnDragDrop
event handlers changes.

Specifically, the Source parame-
ter now refers to the custom drag
object, instead of the dragged con-
trol itself. Since the custom drag
object is given to the target control
in these event handlers, it can be
interrogated for useful informa-
tion, which could be any additional
data fields or properties defined in
the class.

If you are writing code that might
be compiled in various versions of
32-bit Delphi, you must be careful
about which class you inherit your
custom drag object class from. In
Delphi 2 and 3, the Source parame-
ter would only represent your drag
object if you did not inherit from
TDragControlObject. Instead, you
must inherit directly from TDrag-
Object. Delphi 4 (and later) reme-
dies this problem. You can inherit
from any point in the hierarchy and
Source will correctly represent
your custom drag object.

The online help in Delphi 3, 4 and
5 claims that you do not need to
free the drag object created in an
OnStartDrag event handler (Delphi
2 neglected to describe it in the
help). However, this information is
incorrect. Delphi will only automati-
cally free drag objects that it
creates on your behalf when you
do not create your own drag
objects. This problem has been
reported and might be fixed in a
future web update of the VCL help.

When using custom drag
objects, you should verify in the
OnDragOver event handler (and

maybe also in the OnDragDrop event
handler) that the Sourceparameter
is actually a drag object before per-
forming any typecasts. The normal
Delphi way of doing this would
involve using an expression like:

Source is TDragObject

However, for reasons that will
become clearer a little later, you
should use this expression
instead:

IsDragObject(Source)

In a normal application, the effect
of these two expressions will be
identical; however, IsDragObject
caters for other scenarios that the

TObjectTObject

TDragObjectTDragObject

TBaseDragControlObjectTBaseDragControlObject

TDragControlObjectTDragControlObject TDragDockObjectTDragDockObject

TObjectTObject

TDragObjectTDragObject

TDragControlObjectTDragControlObject

➤ Figure 1: The drag control
object hierarchy in Delphi 4
and later.

➤ Figure 2: The drag control
object hierarchy in Delphi 2
and 3.

May 2000 The Delphi Magazine 9

functionality of the is operator
does not.

The DragObjects.Dpr sample
project tries to show the general
idea. It has a number of controls on
a form that can be dragged onto a
panel, such as a listbox, a button, a
combobox and a label. The plan is
that the various controls all pro-
vide one piece of textual informa-
tion, but the text is meant to come
from different properties (the
active listbox item, the button’s
caption, and so on). To try and help
out, each control’s OnStartDrag cre-
ates an instance of a class inherited
from TDragControlObject.

Because of this fact (in combina-
tion with the problem outlined
above) the project will only work
correctly in Delphi 4 and 5. An
alternative project, which is called
DragObjects2.Dpr, has another
drag object class inherited from
TDragObject, which will do the trick
for Delphi 2 and 3.

The new class in the project
DragObjects.Dpr is called TText-
DragObject and has just one extra
string data field called Data, which
is given the piece of text as appro-
priate from each control.

The target panel’s OnDragOver
and OnDragDrop event handlers are
therefore considerably simpler in
implementation, as they just treat
the Source parameter as a TText-
DragObject and read the Data field.
All controls that have an
OnStartDrag event handler share an
OnEndDrag event handler that frees

the drag object. A
number of these event
handlers are shown in
Listing 1.

You should be able
to see that using
custom drag objects
allows a drag and drop
application to be
readily extensible.
You can add more
controls to a form
which can be dragged
from and, so long as
they all create the
same custom drag
object and fill in the
required data fields,
the drop target need
not be changed at all.

It will continue to work regardless
of the drag source, because it gets
the information from the custom
drag object, not the drag source
itself.

Although this business of
creating drag objects is being
introduced as if it is something
over and above the normal VCL
drag and drop support, in truth it is
not. The VCL creates a drag object
for each drag operation anyway. If
you leave the DragObject parame-
ter in the OnStartDrag event
handler with its default nil value,
or have no OnStartDrag event
handler at all, the VCL creates a
TDragControlObject instance to
represent the drag operation. This
behind-the-scenes drag object will
be automatically freed by the VCL.

Customising The
Drag Cursor Further
Drag objects can also be used as
more flexible ways of specifying
the drag cursor to be used when
source controls are accepted or
rejected, potentially using an
image list component.

TDragObject has a protected vir-
tual method GetDragCursor that
takes a Boolean var parameter
called Accept, and also the mouse
co-ordinates. It is supposed to
return a TCursor value depending
on whether the target control
accepts the dragged control or
not. It is hard-coded to return
either crNoDrop or crDrag.

Another protected virtual
method is defined, called
GetDragImages. The drag object can
supply an image list containing an

type
TTextDragObject = class(TDragControlObject)
public
Data: String;

end;
TForm1 = class(TForm)
...

private
FDragObject: TTextDragObject;

end;
...
procedure TForm1.Label1StartDrag(Sender: TObject;
var DragObject: TDragObject);

begin
FDragObject := TTextDragObject.Create(Sender as TLabel);
FDragObject.Data := TLabel(Sender).Caption;
DragObject := FDragObject;

end;
procedure TForm1.ListBox1StartDrag(Sender: TObject;
var DragObject: TDragObject);

begin
FDragObject := TTextDragObject.Create(Sender as TListBox);
with TListBox(Sender) do
FDragObject.Data := Items[ItemIndex];

DragObject := FDragObject;

end;
procedure TForm1.SharedEndDrag(Sender, Target: TObject;
X, Y: Integer);

begin
// All draggable controls share this event handler
FDragObject.Free;
FDragObject := nil

end;
procedure TForm1.Panel1DragOver(Sender, Source: TObject;
X, Y: Integer; State: TDragState; var Accept: Boolean);

begin
// It is tempting to write this...
// Accept := Source is TTextDragObject
// ...however we are advised to write this instead
Accept := IsDragObject(Source)

end;
procedure TForm1.Panel1DragDrop(Sender, Source: TObject;
X, Y: Integer);

begin
// The OnDragOver event handler verified we are dealing
// with a drag object so there is no chance of getting a
// normal control
(Sender as TPanel).Caption := TTextDragObject(Source).Data

end;

➤ Listing 1:
Using drag control objects.

➤ Figure 3: A customised
drag cursor showing the
file being dragged.

10 The Delphi Magazine Issue 57

image that will be merged with the
drag cursor (from GetDragCursor)
to produce a combined, possibly
more informative, drag cursor. The
implementation of GetDragImages in
TDragObject simply returns nil.

You have probably seen the sort
of effect that GetDragImages is
designed for when dragging files in
Windows Explorer. The drag
cursor is enhanced by a faint repre-
sentation of the item being dragged
around (see Figure 3, where
README.TXT is being dragged into a
DOC directory).

TDragControlObject is the useful
class that inherits from TDrag-
Object. It keeps a reference to the
control being dragged in the public
Control property (although the
original Delphi 2 implementation
had the protected and public sec-
tions of the class the wrong way
round, and so the Control property
was actually protected).

By knowing which control is
being dragged, the GetDragCursor
method is overridden to return
either crNoDrop or the control’s
DragCursor property (as opposed
to being fixed to crDrag).

It also overrides the GetDrag-
Images method and calls the con-
trol’s GetDragImages method,

rather than returning nil. Admit-
tedly, the only controls that do
anything in their GetDragImages
methods are TCustomTreeView and
TCustomListView (and their descen-
dants), but the scope is there for
controls to supply their own drag
image list to enhance the drag
cursor (as I will describe later).
However, right now we are not
interested in how components can
supply custom image lists, but
instead how the drag control
object can do this.

A variation on the project
DragObjects.Dpr is given in
DragImage.Dpr. This project has a
label and a listbox that can both be
dragged onto a panel. The label
gives its caption to the panel and
the listbox gives its active item,
and so a custom drag object is used
to hold this information string.
However, as well as adding the tex-
tual data field, this custom drag
object class overrides both
GetDragImages and GetDragCursor.

GetDragCursor is overridden to
provide a custom drag cursor for
all controls that make one of these
drag objects. It uses the same
custom cursor as was used in last
month’s article (the PacMan
cursor). Notice that a custom drag
object can be used to allow many
drag source controls to have the
same drag cursor, without having

to set each control’s DragCursor
property.

GetDragImages is overridden to
create an instance of a TDragImage-
List. This class, which was intro-
duced in Delphi 3, inherits from
TCustomImageList and is an ances-
tor of the TImageList component
class. It provides enough function-
ality to cater for the requirements
of drag cursor building.

Listing 2 shows the custom drag
object class with the two addi-
tional methods. The drag image
list is stored in a private data field
and the destructor ensures that it
gets destroyed. You can see Get-
DragCursor returning the PacMan
cursor when needed.

The GetDragImages method is a
little more involved. If no drag
image list has been created yet,
one gets created by the method.
Then a bitmap is set up, large
enough to hold the image that is
chosen to represent the dragged
item. In this case the code simply
makes a string describing the drag
source, the dragged information
and the time that the drag started.
This information is written onto
the bitmap, and the bitmap is
added into the image list.

In order to get transparent areas
in the image, the bitmap was
initially flood-filled with olive. The
AddMasked image list method was

type
TTextDragObject = class(TDragControlObject)
private
FDragImages: TDragImageList;

protected
function GetDragCursor(Accepted: Boolean;
X, Y: Integer): TCursor; override;

function GetDragImages: TDragImageList; override;
public
Data: String;
destructor Destroy; override;

end;
...
destructor TTextDragObject.Destroy;
begin
FDragImages.Free;
inherited;

end;
function TTextDragObject.GetDragCursor(Accepted: Boolean;
X, Y: Integer): TCursor;

begin
if Accepted then
Result := crPacMan

else
Result := inherited GetDragCursor(Accepted, X, Y)

end;
function TTextDragObject.GetDragImages: TDragImageList;
var
Bmp: TBitmap;
Txt: String;

begin
if not Assigned(FDragImages) then
FDragImages := TDragImageList.Create(nil);

Result := FDragImages;
Result.Clear;
Bmp := TBitmap.Create;

try
// Make up some string to write on bitmap
Txt := Format(' The control called %s says "%s" at %s',
[Control.Name, Data,
FormatDateTime('h:nn am/pm', Time)]);

Bmp.Canvas.Font.Name := 'Arial';
Bmp.Canvas.Font.Style :=
Bmp.Canvas.Font.Style + [fsItalic];

Bmp.Height := Bmp.Canvas.TextHeight(Txt);
Bmp.Width := Bmp.Canvas.TextWidth(Txt);
// Fill background with olive
Bmp.Canvas.Brush.Color := clOlive;
Bmp.Canvas.FloodFill(0, 0, clWhite, fsSurface);
// Write a string on bitmap
Bmp.Canvas.TextOut(0, 0, Txt);
Result.Width := Bmp.Width;
Result.Height := Bmp.Height;
// Make olive pixels transparent,
// whilst adding bmp to list
Result.AddMasked(Bmp, clOlive)

finally
Bmp.Free;

end
end;
procedure TForm1.FormCreate(Sender: TObject);
var
I: Integer;

begin
Screen.Cursors[crPacMan] :=
LoadCursor(HInstance, 'PacMan');

ControlStyle := ControlStyle + [csDisplayDragImage];
for I := 0 to ControlCount - 1 do
with Controls[I] do
ControlStyle := ControlStyle + [csDisplayDragImage];

end;

➤ Listing 2: Setting up
a drag image list.

12 The Delphi Magazine Issue 57

used to add the bitmap to the
image list whilst specifying that all
olive pixels are to become
transparent.

Unfortunately, whilst on first
glances (and after checking with
the help) this would seem enough
to do the job, it is not. The
ControlStyle property help is very
misleading with respect to the
csDisplayDragImage setting. It
suggests that including this flag in
a control’s ControlStyle property
will make the enhanced drag image
for that control be used whenever
and wherever the control is
dragged. Unfortunately, the
enhanced drag image will only be
used when the mouse is over any
control that has this setting, or
when the mouse is not over any
form in the project.

So the image list will only be
used when the mouse is either not
over a possible target (which
means when the mouse is not over
any form in the application) or
when it is over a control that has
the csDisplayDragImage value in its
ControlStyle set property. Only
treeviews and listviews include
this member in their ControlStyle
property, so the drag image list will

only be used when the mouse is
over a treeview or listview, or
entirely off the form. This has been
logged as a bug in the VCL, as
opposed to a bug in the online
help.

To fix this problem in the appli-
cation, the form’s OnCreate event
handler iterates through all its con-
trols, adding csDisplayDragImage
into the ControlStyle property.
Once this is done, we get what we
were after. When a control is
dragged over something that does
not accept it, it looks like Figure 4,
and when it is over something that
does accept it, it looks like Figure 5.

Note that this application has a
simple form, where each control
on the form has no child controls.
In a more complex form, you will
need to recursively loop through
each control and its children, set-
ting the ControlStyle property, as
is done by the FixControlStyles
procedure in Listing 3.

Custom Components
And Drag Image Lists
The point was made earlier that all
controls have a GetDragImages
method that is automatically
called by the drag objects that are
created automatically by the VCL.
Only listviews and tree views over-
ride this method (the Win32

Common Controls API supports
setting up drag image lists auto-
matically for these controls).
These are also the only compo-
nents to include csDisplay-
DragImage in their ControlStyle
property.

You can write your own custom
component classes that supply
their own self-maintained image
list by overriding the GetDrag-
Images method. Two sample com-
ponents are on the disk this month
to show the idea. TDragButton
inherits from TButton, and can be
found in the DragButton.pas unit.
TDragEdit is inherited from TEdit,
and can be found in the
DragEdit.pas unit.

These control classes do a
number of similar things. They
both automatically start a drag
operation if the user Ctrl-clicks on
them. This is done in an overrid-
den version of the MouseDown
method, which normally is only
responsible for triggering the
OnMouseDown event. They also both
define a private data field called
FDragImages, which is a
TDragImageList. They add the
csDisplayDragImage setting into
their ControlStyle property inside
the constructor. The other thing
they do is to override the
GetDragImagesmethod to add some
image into their drag image list.

In the case of the button compo-
nent, it adds a bitmap that is a
transparent representation of
itself to the image list (see Figure
6). This is achieved by calling the
button’s PaintTo method, telling it
to paint a copy of itself onto the
bitmaps canvas. AddMasked is used
to add the bitmap to the image list,
specifying that all pixels that

➤ Figure 4: A No Drop drag cursor
enhanced by a drag image list.

➤ Figure 5: A custom drag cursor
enhanced by a drag image list.

procedure FixControlStyles(Parent: TControl);
var
I: Integer;

begin
Parent.ControlStyle := Parent.ControlStyle + [csDisplayDragImage];
if Parent is TWinControl then
with TWinControl(Parent) do
for I := 0 to ControlCount - 1 do
FixControlStyles(Controls[I]);

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
FixControlStyles(Self);
...

end;

➤ Listing 3: Generic solution to
fix the ControlStyle problem.

May 2000 The Delphi Magazine 13

match clBtnFace (the button’s
main colour) should be made
transparent. Listing 4 shows how
this is all achieved. Unfortunately,
due to the lack of the canvas’s Lock
and Unlockmethods in Delphi 2, the
PaintTo method is ineffective in
that version. Delphi 3 (and later)
supports it fine, however.

The edit component tries some-
thing different. It loads a bitmap (of
Athena) that is compiled in as a
Windows resource (see Listing 5).
Again, when adding the image to
the image list, the common back-
ground colour (clSilver) is speci-
fied as the transparent colour.
Clearly, having a copy of the large
Athena bitmap hanging off the drag
cursor is not very practical, but it
does emphasise what you can
achieve with custom drag images.

DLLs And Dragging
There is one more benefit of using
custom drag objects that we
should look into before leaving the

subject. It involves dragging
between a form created in a DLL
and a form created in either a dif-
ferent DLL, or the main EXE. Inci-
dentally, if you are using Delphi
packages (a special type of DLL
specific to Delphi and C++Builder)
this issue does not arise: this only
applies to normal DLLs.

A pair of projects are included
on the disk which represent an exe-
cutable and a DLL (ExeDrag.Dpr
and DllDrag.Dpr respectively). The
projects can be compiled and exe-
cuted from any 32-bit version of
Delphi. There is also a project
group (ExeAndDllDragging.Bpg)

containing these
two projects that
can be used in
Delphi 4 or later.

The DLL contains a form class
and exports a routine that displays
it. In order for forms created in
DLLs to display correctly, the
DLL’s Application object needs to
have its Handle property assigned
the value of the EXE’s Applica-
tion.Handle. The exported DLL
routine takes a window handle
(assumed to be the Application
object handle) and assigns it to its
own Application.Handle. Without
this, each form from the DLL would
have an extra icon on the task bar.

The form is destroyed when
closed, thanks to the OnClose event
handler assigning a value of caFree
to its Action parameter (a var
parameter), as shown in Listing 6.

The form in the DLL has a memo
which can have selected text
dragged from it (by dragging with
the right mouse button). A prob-
lem with this is that TDragObject
(which captures the mouse during
a drag operation, and handles the
resulting mouse messages) does
not react to the right mouse button
being released in Delphi 2 or 3. So
dragging with the right mouse

➤ Listing 4: A button
component supplying a
custom drag image list.

type
TDragButton = class(TButton)
private
FDragImages: TDragImageList;

protected
function GetDragImages: TDragImageList; override;
procedure MouseDown(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer); override;

public
constructor Create(AOwner: TComponent); override;

end;
...
constructor TDragButton.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
ControlStyle := ControlStyle + [csDisplayDragImage]

end;
function TDragButton.GetDragImages: TDragImageList;
var
Bmp: TBitmap;

begin
if not Assigned(FDragImages) then
FDragImages := TDragImageList.Create(Self);

Bmp := TBitmap.Create;
try

Bmp.Width := Width;
Bmp.Height := Height;
Bmp.Canvas.Lock;
try
PaintTo(Bmp.Canvas.Handle, 0, 0);

finally
Bmp.Canvas.Unlock

end;
FDragImages.Width := Width;
FDragImages.Height := Height;
FDragImages.AddMasked(Bmp, clBtnFace);
Result := FDragImages;

finally
Bmp.Free

end
end;
procedure TDragButton.MouseDown(Button: TMouseButton; Shift:
TShiftState; X, Y: Integer);

begin
inherited;
// Automatically start dragging on a Ctrl-click
if ssCtrl in Shift then
BeginDrag(True)

end;

➤ Listing 5: An edit component supplying a custom image list.

➤ Figure 6:
Another
enhanced
drag cursor,
this time
managed by
the component
itself.

function TDragEdit.GetDragImages: TDragImageList;
var
Bmp: TBitmap;

begin
if not Assigned(FDragImages) then
FDragImages := TDragImageList.Create(Self);

Bmp := TBitmap.Create;
try
Bmp.LoadFromResourceName(HInstance, 'Athena');
FDragImages.Width := Bmp.Width;
FDragImages.Height := Bmp.Height;
FDragImages.AddMasked(Bmp, clSilver);
Result := FDragImages;

finally
Bmp.Free

end
end;

14 The Delphi Magazine Issue 57

button only works well in Delphi 4
or later (as do a number of other
things relating to drag and drop, as
we have seen). When you release
the right mouse button, you must
follow this with a click of the left
mouse button, if running with the
earlier versions of Delphi.

The form in the EXE has an edit
control which is coded to accept
anything dragged from a
TCustomEdit (or any descendant of
that class). Listing 7 shows both of
these sections of code.

A TMemo is a descendant of
TCustomEdit and so the code might
be expected to work. However,
because the memo lives in the DLL
and the edit control’s event han-
dlers are in the EXE, things don’t go
according to plan. The edit
appears not to want to accept
anything from the memo.

The EXE’s is expression will be
asking the DLL’s memo object
whether its VMT (virtual method
table) matches that of TCustomEdit
(or some descendant), but will be
referring to the implementation of
TCustomEdit in the code compiled
into the EXE. Since the memo
inherits from TCustomEdit as com-
piled into the DLL, the VMTs of the
two versions of TCustomEdit will be
at different addresses and so is
will return False.

It is probably a good idea that it
fails, as TCustomEdit is a class that
is quite far down the VCL hierar-
chy, and there is always the possi-
bility that the DLL and EXE are

compiled with different versions of
Delphi. Each version of Delphi
makes various changes around the
VCL. Consequently, the internal
layout of data fields and the con-
tent of the VMT could be rather dif-
ferent. Treating one TCustomEdit
object (compiled with one version
of Delphi) as if it were the other
(compiled with a different version)
could cause havoc.

So, the way around this problem
is to use custom drag objects to
represent the information being
dragged across, in conjunction
with the aforementioned IsDrag-
Object function. Drag objects are
instances of quite shallow classes,
not far from TObject in the VCL

hierarchy. Things are less likely to
change in these classes from one
version to the next as they are with
component classes, although they
still do. Consequently, it is still
important to ensure that the DLL
and EXE are compiled with the
same version of Delphi.

IsDragObject does not use is to
find out if the object in question
(passed as the Sourceparameter to
OnDragOver and OnDragDrop) inher-
its from TDragObject. Instead, it
compares the class name of the
given object against the class
name of TDragObject. If there is no
match, it goes back to the ancestor
of the supplied object and tries
again. Eventually, it will either find
a match or it won’t, so the function
will return True or False.

Clearly you could write a similar
routine that would do the same job
for edit controls or memos, but the
fact that IsDragObject exists
already suggests that it is easiest
to use custom drag objects when
dragging between forms from
different binary modules.

Assuming IsDragObject returns
True, you can then apply a static

procedure ShowForm(ApplicationHandle: HWnd); stdcall;
begin
// Set Application object window handle to match that in the EXE,
// meaning we do not get another task bar button for the form
Application.Handle := ApplicationHandle;
TDLLForm.Create(Application).Show

end;
procedure TDLLForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
// The form frees itself when closed
Action := caFree

end;

➤ Listing 6: A routine exported from a DLL that creates and
shows a form.

// This code is from the DLL form
procedure TDLLForm.Memo1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
// Check for right mouse button, and no other buttons/keys
if Shift = [ssRight] then
(Sender as TCustomEdit).BeginDrag(True)

end;
// This code is from the EXE form
procedure TExeForm.Edit1DragOver(Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

begin
Accept := Source is TCustomEdit

end;
procedure TExeForm.Edit1DragDrop(Sender, Source: TObject; X, Y: Integer);
begin
(Sender as TCustomEdit).Text := (Source as TCustomEdit).SelText

end;

➤ Listing 7: Drag and drop
code from both the DLL
and the EXE.

// This code is from the DLL form
procedure TDLLForm.Memo1StartDrag(Sender: TObject;
var DragObject: TDragObject);

begin
DragObject := TTextDragObject.Create;
TTextDragObject(DragObject).Data := (Sender as TMemo).SelText;
FDragObject := DragObject

end;
procedure TDLLForm.Memo1EndDrag(Sender, Target: TObject; X, Y: Integer);
begin
FDragObject.Free;
FDragObject := nil

end;
// This code is from the EXE form
procedure TExeForm.Edit1DragOver(Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

begin
Accept := IsDragObject(Source)

end;
procedure TExeForm.Edit1DragDrop(Sender, Source: TObject; X, Y: Integer);
begin
(Sender as TCustomEdit).Text := TTextDragObject(Source).Data

end;

➤ Listing 8: Drag and drop
code that works between
a DLL and an EXE.

16 The Delphi Magazine Issue 57

typecast to Source to turn it into a
reference to your TDragObject
descendant. In this case, the
custom drag object inherits from
TDragObject directly (not
TDragControlObject). This means
that the code will work in all Delphi
versions from 2 onwards, but it
does mean that the DragCursor
property values will be ignored if
you set them. It also means that
trying to use the application in
Delphi 2 or 3 will show up the prob-
lem of dragging with the right
mouse button.

Listing 8 shows the OnStartDrag
and OnEndDrag event handlers for
the memo from the DLL along with
the OnDragOver and OnDragDrop
event handlers of the edit control
in the EXE, now that they have
been fixed to work as required.

Since we are on the subject of
DLLs at the moment it might be
useful to mention that a drag
object has an Instancemethod that
returns the instance handle for the
module that created it. An instance
handle is the address at which that
module was loaded, so for EXEs,
the instance handle will always

be $400,000, but will be different for
all the DLLs in a given application’s
address space.

In addition, TDragObjectdefines a
virtual method GetName that
returns (by default) the object’s
class name as a string. This can be
overridden in descendant classes.

Summary
That’s it for VCL drag and drop.
Next month we finish the series by
looking at how to do drag and drop
with other applications in the
Windows environment. This will
involve writing message handlers,
calling Windows APIs, implement-
ing COM interfaces and using
custom clipboard formats, so if
you need to do any background
reading, start now!

Acknowledgements
Thanks go to Roy Nelson from
Inprise/Borland’s European Tech-
nical Team. It was Roy who first
pointed me in the direction of how
to get custom drag image lists
operational.

Brian Long is a UK-based free-
lance consultant and trainer. He
spends most of his time running
Delphi and C++Builder training
courses for his clients, and doing
problem-solving work for them.
You can reach Brian at
brian@blong.com

Copyright ©2000 Brian Long.
All rights reserved.

	Drag Control Objects
	Customising The Drag Cursor Further
	Custom Components And Drag Image Lists
	DLLs And Dragging
	Summary
	Acknowledgements

